PHẦN 6: GIẢI QUYẾT CÁC BÀI TOÁN VỀ CỰC TRỊ TRÊN TẬP SỐ PHỨC DƯỚI SỰ HỖ TRỢ CỦA CASIO FX 580 VNX

Số phức là một chuyên đề hay và tương đối khó, thường xuất hiện trong các đề thi THPT Quốc Gia những năm gần đây. Do đó, Diễn Đàn Máy Tính Cầm Tay chúng tôi sẽ gởi đến bạn đọc chuỗi các bài viết  sử dụng máy tính Casio fx 580 vnx  để giải quyết nhanh các bài toán về Số Phức. Chuyên đề này bao gồm các phần:

Phần 1: Sơ lược các tính năng Số phức trên máy tính Casio fx 580 vnx

Phần 2: Giải quyết các phép toán cơ bản về số phức

Phần 3: Căn bậc hai của số phức và phương trình nghiệm phức

Phần 4: Tìm đường thẳng biểu diễn tập hợp số phức

Phần 5: Tập hợp điểm biểu diễn số phức liên quan đến đường tròn

Phần 6: Tìm cực trị trên tập số phức

Phần 7: Viết phương trình đường thẳng đi qua hai điểm cực trị của hàm số bậc 3

Phần 8: Ứng dụng số phức vào phép tịnh tiến trong mặt phẳng

Phần 9: Ứng dụng số phức vào phép đối xứng trục và đối xứng tâm trong mặt phẳng

[dropshadowbox align=”none” effect=”lifted-both” width=”auto” height=”” background_color=”#ffffff” border_width=”1″ border_color=”#dddddd” ]PHẦN 6: GIẢI QUYẾT CÁC BÀI TOÁN VỀ CỰC TRỊ TRÊN TẬP SỐ PHỨC DƯỚI SỰ HỖ TRỢ CỦA CASIO FX 580 VNX[/dropshadowbox]

Trong Phần 6 của Chuyên đề Số Phức, chúng tôi sẽ trình bày một số bài toán tìm GTLN và GTNN trên tập số phức bằng phương pháp tìm tập hợp điểm kết hợp với một số bất đẳng thức dưới sự hỗ trợ của Casio fx 580 vnx

Bài toán 1: (THPT chuyên Biên Hòa- Hà Nam 2017)

Cho số phức $latex z$ thỏa mãn $latex \left| z-2-4i \right|=\left| z-2i \right|$. Tìm số phức $latex z$ có môđun nhỏ nhất

  1. $latex z=2-2i$
  2. $latex z=1+i$
  3. $latex z=1-i$
  4. $latex z=2+2i$

Hướng dẫn giải:

  1. Tìm tập hợp điểm biểu diễn số phức $latex z$

Đặt $latex f\left( z \right)={{\left| z-2-4i \right|}^{2}}-{{\left| z-2i \right|}^{2}}$

Sử dụng Casio fx 580vnx tính $latex f\left( 0 \right)$; $latex f\left( 1 \right)$ và $latex f\left( i \right)$

  • Chuyển máy tính về phương thức COMPLEX w2
  • Nhập biểu thức $latex {{\left| z-2-4i \right|}^{2}}-{{\left| z-2i \right|}^{2}}$

image001 1

  • $x=0$

image002 1

  • $latex x=1$

image003 1

  • $latex x=i$

image003 1

Như vậy ta có: $latex \left\{ \begin{align} & f\left( 0 \right)=16 \\ & f\left( 1 \right)=12 \\ & f\left( i \right)=12 \\\end{align} \right.$ $latex \Rightarrow \left\{ \begin{align} & c=16 \\ & a+c=12 \\ & b+c=12 \\\end{align} \right.$ $ \Rightarrow \left\{ \begin{align}  & c=16 \\ & a=-4 \\ & b=-4 \\\end{align} \right.\\$

$latex \Rightarrow -4x-4y+16=0$ hay $ x+y-4=0\\$

Suy ra tập hợp số phức $latex z$ là đường thẳng $latex x+y=4$

  1. Tìm số phức $latex z$ thõa yêu cầu đề bài

Áp dụng bất đẳng thức Bunyakocsky ta có:

$latex \sqrt{{{1}^{2}}+{{1}^{2}}}.\sqrt{{{x}^{2}}+{{y}^{2}}}\ge x+y$ $ \Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}}\ge 2\sqrt{2}\\$

Dấu $latex ”=”$ xảy ra khi và chỉ khi $latex \left\{ \begin{align}  & x+y=4 \\ & x=y \\\end{align} \right.$ $latex \Leftrightarrow \left\{ \begin{align}  & x=2 \\ & y=2 \\\end{align} \right.$

Vậy $latex z=2+2i$

Đáp án D

Bài toán 2: Cho số phức $latex z$ thỏa mãn $latex \left| {{z}^{2}}-2z+5 \right|=\left| \left( z-1+2i \right)\left( z-1+3i \right) \right|$. Tìm giá trị nhỏ nhất của môđun số phức $latex w=z-1+i$

  1. $latex \dfrac{1}{2\sqrt{2}}$
  2. $latex \dfrac{1}{2}$
  3. $latex \dfrac{1}{4}$
  4.  $latex 1$

Hướng dẫn giải

Phương trình $latex {{z}^{2}}-2z+5=0$ có nghiệm $latex {{z}_{1}}=1+2i$ và $latex {{z}_{2}}=1-2i$

image004 1 image005 1

Suy ra: $ \left| {{z}^{2}}-2z+5 \right|=\left| \left( z-1+2i \right)\left( z-1+3i \right) \right|\\$

$latex \Leftrightarrow \left| \left( z-1-2i \right)\left( z-1+2i \right) \right|=\left| \left( z-1+2i \right)\left( z-1+3i \right) \right|$

$latex \Leftrightarrow \left[ \begin{align}  & \left| z-1+2i \right|=0 \\ & \left| z-1-2i \right|=\left| z-1+3i \right| \\\end{align} \right.$

Trường hợp 1: $latex \left| z-1+2i \right|=0$

Khi đó: $latex \left| w+i \right|=0$ suy ra $latex \left| w \right|=1$

Trường hợp 2: $latex \left| z-1-2i \right|=\left| z-1+3i \right|$

Ta có: $latex \left| z-1-2i \right|=\left| z-1+3i \right|$$latex \Leftrightarrow {{\left| z-1-2i \right|}^{2}}-{{\left| z-1+3i \right|}^{2}}=0$

Tìm tập hợp điểm biểu diễn số phức $latex z$ thõa $latex {{\left| z-1-2i \right|}^{2}}-{{\left| z-1+3i \right|}^{2}}=0$

Đặt $latex f\left( z \right)={{\left| z-1-2i \right|}^{2}}-{{\left| z-1+3i \right|}^{2}}$

Sử dụng Casio fx 580vnx tính $latex f\left( 0 \right)$; $latex f\left( 1 \right)$ và $latex f\left( i \right)$

  • Chuyển máy tính về phương thức COMPLEX w2
  • Nhập biểu thức $latex {{\left| z-1-2i \right|}^{2}}-{{\left| z-1+3i \right|}^{2}}$

image006 1

  • r$x=0$

 

image007 1

  • r $latex x=1$

image007 1

  • $latex x=i$

image008 1

Như vậy ta có: $latex \left\{ \begin{align}  & f\left( 0 \right)=-5 \\ & f\left( 1 \right)=-5 \\& f\left( i \right)=-15 \\\end{align} \right.$

$latex \Rightarrow \left\{ \begin{align}  & c=-5 \\ & a+c=-5 \\ & b+c=-15 \\\end{align} \right.$ $latex \Rightarrow \left\{ \begin{align} & c=-5 \\ & a=0 \\& b=-10 \\\end{align} \right.$

$ \Rightarrow y=\dfrac{-1}{2}\\$

Suy ra: $latex w=x-1+\dfrac{i}{2}$

Khi đó: $latex {{\left| w \right|}^{2}}={{\left( x-1 \right)}^{2}}+\dfrac{1}{4}\ge \dfrac{1}{4}$

$latex \Rightarrow {{\left| w \right|}_{\min }}=\dfrac{1}{2}$ khi và chỉ khi $latex x=1$

Từ trường hợp 1 và 2 ta có $latex {{\left| w \right|}_{\min }}=\dfrac{1}{2}$

Đáp án B

Bài toán 3: Xét các số phức $latex z$ thỏa mãn $latex \left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}$. Gọi $latex m,M$ lần lượt là GTNN và GTLN của $latex \left| z-1+i \right|$ . Tính $latex P=m+M$

  1. $latex \sqrt{13}+\sqrt{73}$
  2. $latex 5\sqrt{2}+\sqrt{73}$
  3. $latex \dfrac{5\sqrt{2}+2\sqrt{73}}{2}$
  4. $latex \dfrac{5\sqrt{2}+\sqrt{73}}{2}$

Hướng dẫn giải

Đặt $latex z=x+yi$

Ta có: $latex \left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}$

$latex \Leftrightarrow \sqrt{{{\left( x+2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}}+\sqrt{{{\left( x-4 \right)}^{2}}+{{\left( y-7 \right)}^{2}}}=6\sqrt{2}$

Theo bất đẳng thức Mincopxki ta có:

$\sqrt{{{\left( x+2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}}+\sqrt{{{\left( x-4 \right)}^{2}}+{{\left( y-7 \right)}^{2}}}\ge \sqrt{{{\left( x+2+4-x \right)}^{2}}+{{\left( y-1+7-y \right)}^{2}}}=6\sqrt{2}\\$

Dấu $latex ”=”$ xảy ra khi và chỉ khi $latex \left\{ \begin{align} & x+2=y-1 \\ & x-4=y-7 \\ & x\in \left[ -2;4 \right] \\ \end{align} \right.$

$latex \Leftrightarrow \left\{ \begin{align} & y=x+3 \\ & x\in \left[ -2;4 \right] \\ \end{align} \right.$

Như vậy tập hợp số phức $latex z$ thỏa điều kiện $latex \left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}$ là đoạn thẳng $latex y=x+3$ với $latex x\in \left[ -2;4 \right]$

Sử dụng tính năng TABLE để tìm GTLN và GTNN của $latex \left| z-1+i \right|$

Ta có: $latex \left| z-1+i \right|=\left| x+yi-1+i \right|=\left| \left( x-1 \right)+\left( y+1 \right)i \right|=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}}=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x+4 \right)}^{2}}}$ (thay $latex y=x+3$ )

Nhập hàm số $latex f\left( x \right)=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x+4 \right)}^{2}}}$ và $latex start=-2$; $latex end=4$ và $latex step=\dfrac{6}{29}$

image009 1 image010 1

Và bảng kết quả thu được là:

image011 1 image012 1

Theo bảng kết quả ta thấy

\[M=Maxf\left( x \right)=f\left( 4 \right)=\sqrt{73}\]

và ta tiếp tục kiểm tra giá trị của $latex f\left( x \right)$ với $latex x\in \left[ \dfrac{-52}{29};\dfrac{-40}{29} \right]$ để tìm giá trị xấp xỉ $latex Minf\left( x \right)$

Nhập hàm số $latex f\left( x \right)=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x+4 \right)}^{2}}}$ và $latex start=-\dfrac{52}{29}$; $latex end=\dfrac{-40}{29}$ và $latex step=\dfrac{12}{841}$

image013 1 image014 1

$latex m=Minf(x)\approx 3.535546003$

image015 1

Như vậy $latex m+M\approx 12.07954975$

Đáp án: C


Cảm ơn các bạn đã theo dõi bài viết GIẢI QUYẾT CÁC BÀI TOÁN VỀ CỰC TRỊ TRÊN TẬP SỐ PHỨC DƯỚI SỰ HỖ TRỢ CỦA CASIO FX 580 VNX . Mọi ý kiến đóng góp và các câu hỏi thắc mắc về bài viết cũng như các vấn đề về máy tính Casio fx 580vnx , bạn đọc có thể gởi tin nhắn trực tiếp về fanpage DIỄN ĐÀN TOÁN CASIO.

Chia sẻ

About Ngọc Hiền Bitex

Bitex Ngọc Hiền

Bài Viết Tương Tự

Capture

THỰC HIỆN MỘT SỐ BÀI TOÁN SỐ PHỨC BẰNG MÁY TÍNH CASIO FX-580VN X

Số phức là một nội dung khá mới mẻ, thời lượng không nhiều, học sinh chỉ mới biết được những kiến thức cơ bản của số phức, việc giải quyết những bài toán số phức còn gặp nhiều hạn chế. Năm bắt được vấn đề đó, Bitex EDU biên soạn tài liệu này nhằm hỗ trợ các em học sinh 12 một số hướng dẫn giải các bài toán số phức trên máy tính Casio fx-580VN X nhằm giúp các em có những sự chuẩn bị tốt nhất trong các kì thi sắp tới.

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết