Bài toán Tích phân VDC của Trường chuyên QH Huế

tphue1a

 

Theo định nghĩa tích phân ta suy ra

$$F(1)=F(0)+\int_0^1f(x)dx$$

Như vậy ở đây ta sẽ tính $\displaystyle I=\int_0^1\dfrac{\left(x+\sqrt{x^2+1}\right)^{2021}}{\sqrt{x^2+1}}dx$. Máy tính cầm tay không hỗ trợ tính tích phân này

 

Đặt $t=x+\sqrt{x^2+1}\Rightarrow dt =\left(1+\dfrac{x}{\sqrt{x^2+1}}\right)dx \Rightarrow \dfrac{dt}{t}=\dfrac{dx}{\sqrt{x^2+1}}$

Đổi cân: $\begin{array}{l|lc}
x&0&1\\ \hline
t&1&1+\sqrt2\end{array}$

 

Vậy $$I=1+\int_1^{1+\sqrt2}t^{2020}dt=1+\left[\dfrac{t^{2021}}{2021}\right]_1^{1+\sqrt2}=\dfrac{2020+\left(1+\sqrt2\right)^{2021}}{2021}$$

Ta chọn B.

Chia sẻ

About TS. Nguyễn Thái Sơn

TS. Nguyễn Thái Sơn
Nguyên trưởng Khoa Toán-Tin học ĐHSP TP HCM (1999-2009). /n Nguyên Giám đốc- Tổng biên tập NXB ĐHSP TP HCM (2009-2011). /n Nguyên Tổng thư ký Hội Toán học TP HCM (2008-2013). /n Giảng viên thỉnh giảng ĐHSP TP HCM.

Bài Viết Tương Tự

TỔNG HỢP DAO ĐỘNG ĐIỀU HÒA TRÊN MÁY TÍNH CASIO FX-880BTG

Đề bài: Một vật thực hiện 2 dao động điều hòa cùng phương, cùng tần …