ỨNG DỤNG TABLE TÌM GTLN, GTNN CỦA MỘT MỘT BIỂU THỨC CHO TRƯỚC

Ví dụ :  Câu 36 Đề Thi Thử -Sở Giáo Dục Đào Tạo Bắc Ninh – năm học 2017-2018

Cho hai số $x, y$ thỏa mãn $log (x + 2y) = \log x + \log y$. Khi đó, giá trị nhỏ nhất của biểu thức $P = \dfrac{{{x^2}}}{{1 + 2y}} + \dfrac{{4{y^2}}}{{1 + x}}$ là

$A. 6$                          $B.\dfrac{32}{5}$                             $C.\dfrac{31}{5}$                                     $D.\dfrac{29}{5}$                                                                    

Giải

Từ $\log (x + 2y) = \log x + \log y \Rightarrow x + 2y = xy \Rightarrow y = \dfrac{x}{{x – 2}}$

Ta được: $P = \dfrac{{{x^2}}}{{1 + 2y}} + \dfrac{{4{y^2}}}{{1 + x}} = \dfrac{{{x^2}}}{{1 + \dfrac{{2x}}{{x – 2}}}} + \dfrac{{4{{\left( {\dfrac{x}{{x – 2}}} \right)}^2}}}{{1 + x}}$
Ta vào mode 7 ( TABLE) để dự đoán giá trị nhỏ nhất thuộc khoảng nào.

1

Ta nhận thấy tại khoảng $\left( {3,5;4,5} \right)$ . Tại đó P đổi chiều vậy giá trị nhỏ nhất phải nằm trong khoảng đó.  Vậy ta có thể kết luận ${P_{\min }} = \dfrac{{32}}{5}$
 tại $x=4$. ( Có thể chia nhỏ hơn trong đoạn 3,5 đến 4,5 để hoàn toàn tin tưởng giá trị đã chọn). Chọn đáp án B.

 

 

Chia sẻ

About toancasiobitex

Toancasiobitex

Bài Viết Tương Tự

Picture1 1

MỘT SỐ BÀI TÍNH TÍCH PHÂN THƯỜNG GẶP

Giới thiệu đến quý thầy cô và các bạn một số hướng dẫn giải của …

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết