ỨNG DỤNG TABLE TÌM GTLN, GTNN CỦA MỘT MỘT BIỂU THỨC CHO TRƯỚC
- 14/12/2021
- 1,712 lượt xem
Ví dụ : Câu 36 Đề Thi Thử -Sở Giáo Dục Đào Tạo Bắc Ninh – năm học 2017-2018
Cho hai số $x, y$ thỏa mãn $log (x + 2y) = \log x + \log y$. Khi đó, giá trị nhỏ nhất của biểu thức $P = \dfrac{{{x^2}}}{{1 + 2y}} + \dfrac{{4{y^2}}}{{1 + x}}$ là
$A. 6$ $B.\dfrac{32}{5}$ $C.\dfrac{31}{5}$ $D.\dfrac{29}{5}$
Giải
Từ $\log (x + 2y) = \log x + \log y \Rightarrow x + 2y = xy \Rightarrow y = \dfrac{x}{{x – 2}}$
Ta được: $P = \dfrac{{{x^2}}}{{1 + 2y}} + \dfrac{{4{y^2}}}{{1 + x}} = \dfrac{{{x^2}}}{{1 + \dfrac{{2x}}{{x – 2}}}} + \dfrac{{4{{\left( {\dfrac{x}{{x – 2}}} \right)}^2}}}{{1 + x}}$
Ta vào mode 7 ( TABLE) để dự đoán giá trị nhỏ nhất thuộc khoảng nào.
Ta nhận thấy tại khoảng $\left( {3,5;4,5} \right)$ . Tại đó P đổi chiều vậy giá trị nhỏ nhất phải nằm trong khoảng đó. Vậy ta có thể kết luận ${P_{\min }} = \dfrac{{32}}{5}$
tại $x=4$. ( Có thể chia nhỏ hơn trong đoạn 3,5 đến 4,5 để hoàn toàn tin tưởng giá trị đã chọn). Chọn đáp án B.