ỨNG DỤNG TABLE TÌM GTLN, GTNN CỦA MỘT MỘT BIỂU THỨC CHO TRƯỚC

Ví dụ :  Câu 36 Đề Thi Thử -Sở Giáo Dục Đào Tạo Bắc Ninh – năm học 2017-2018

Cho hai số $x, y$ thỏa mãn $log (x + 2y) = \log x + \log y$. Khi đó, giá trị nhỏ nhất của biểu thức $P = \dfrac{{{x^2}}}{{1 + 2y}} + \dfrac{{4{y^2}}}{{1 + x}}$ là

$A. 6$                          $B.\dfrac{32}{5}$                             $C.\dfrac{31}{5}$                                     $D.\dfrac{29}{5}$                                                                    

Giải

Từ $\log (x + 2y) = \log x + \log y \Rightarrow x + 2y = xy \Rightarrow y = \dfrac{x}{{x – 2}}$

Ta được: $P = \dfrac{{{x^2}}}{{1 + 2y}} + \dfrac{{4{y^2}}}{{1 + x}} = \dfrac{{{x^2}}}{{1 + \dfrac{{2x}}{{x – 2}}}} + \dfrac{{4{{\left( {\dfrac{x}{{x – 2}}} \right)}^2}}}{{1 + x}}$
Ta vào mode 7 ( TABLE) để dự đoán giá trị nhỏ nhất thuộc khoảng nào.

1

Ta nhận thấy tại khoảng $\left( {3,5;4,5} \right)$ . Tại đó P đổi chiều vậy giá trị nhỏ nhất phải nằm trong khoảng đó.  Vậy ta có thể kết luận ${P_{\min }} = \dfrac{{32}}{5}$
 tại $x=4$. ( Có thể chia nhỏ hơn trong đoạn 3,5 đến 4,5 để hoàn toàn tin tưởng giá trị đã chọn). Chọn đáp án B.

 

 

Chia sẻ

About toancasiobitex

Toancasiobitex

Bài Viết Tương Tự

8

PYTHAGORAS (PITAGO) VÀ ĐỊNH LÍ HÌNH HỌC MANG TÊN ÔNG

Pythagoras đã thành công trong việc chứng minh tổng 3 góc của một tam giác bằng 180° và nổi tiếng nhất nhờ định lý toán học mang tên ông. Ông cũng được biết đến là "cha đẻ của số học". Ông đã có nhiều đóng góp quan trọng cho triết học và tín ngưỡng vào cuối thế kỷ 7 TCN. Về cuộc đời và sự nghiệp của ông, có quá nhiều các huyền thoại khiến việc tìm lại sự thật lịch sử không dễ dàng. Pythagoras và các học trò của ông tin rằng mọi sự vật đều liên hệ đến toán học, và mọi sự việc đều có thể tiên đoán trước qua các chu kỳ.

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết