Giải câu 37 ĐMH 2018 bằng tư duy kết hợp với máy tính

Câu 37. Cho hàm số [latex]f(x)[/latex] xác định trên [latex]\mathbb R\backslash\{\dfrac12\}[/latex] thỏa mãn [latex]f'(x)=\dfrac2{2x-1}[/latex], [latex]f(0)=1[/latex] và [latex]f(1)=2[/latex]. Giá trị của biểu thức [latex]f(-1)+f(3)[/latex] bằng

A. [latex]4+\ln15[/latex].

B. [latex]2+\ln15[/latex]

C. [latex]3+\ln15[/latex].

D. [latex]\ln15[/latex].

Lời giải

 

Ta có : [latex]f\left( x \right)=\int{{f}’\left( x \right)\text{d}x}=2\int{\dfrac{1}{2x-1}\text{d}x}=\dfrac{2}{2}\ln \left| 2x-1 \right|+C=\ln \left| 2x-1 \right|+C.[/latex]

Ta có: [latex]f\left( -1 \right)-f\left( 0 \right)=\int\limits_{0}^{-1}{{f}’\left( x \right)\text{d}x}=\int\limits_{0}^{-1}{\dfrac{2}{2x-1}\text{d}x}=\left. \ln \left| 2x-1 \right| \right|_{0}^{-1}=\ln 3.[/latex] [latex]f\left( 3 \right)-f\left( 1 \right)=\int\limits_{1}^{3}{{f}’\left( x \right)\text{d}x}=\int\limits_{1}^{3}{\dfrac{2}{2x-1}\text{d}x}=\left. \ln \left| 2x-1 \right| \right|_{1}^{3}=\ln 5.[/latex]

Vậy [latex]f\left( -1 \right)-f\left( 0 \right)+f\left( 3 \right)-f\left( 1 \right)=\ln 3+\ln 5\Leftrightarrow f\left( -1 \right)+f\left( 3 \right)=\ln 3+\ln 5+3\Leftrightarrow f\left( -1 \right)+f\left( 3 \right)=\ln 15+3[/latex]

Giải trên máy tính CASIO fx-570VN PLUS:

Nhập vào máy tính: [latex]\int\limits_{0}^{-1}{\dfrac{2}{2x-1}\text{d}x}+\int\limits_{1}^{3}{\dfrac{2}{2x-1}\text{d}x}+1+2[/latex], thu được:

cau37

So sánh đáp án, chọn C.

Mẹo: Để ý phép toán cần thực hiện là [latex]f\left( -1 \right)+f\left( 3 \right)[/latex] nên [latex]x=-1;x=3[/latex] đều phải đóng vai trò là cận trên hoặc cận dưới của tích phân.

Chia sẻ

About TailieuCasio

TailieuCasio

Bài Viết Tương Tự

article 14

Giải câu 48 đề minh họa 2021

Không làm mất tính tổng quát ta có thể tịnh tiến theo trục hoành sao …

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết