SỬ DỤNG CASIO fx 580VNX ĐỂ GIẢI NHANH PHƯƠNG TRÌNH LƯỢNG GIÁC BẬC NHẤT SIN, COS- PHẦN 2

Phương trình bậc nhất đối với sin và cos là một dạng phương trình thường gặp trong chương trình Toán lớp 11. Do đó, tiếp nối Phần 1, trong bài viết này Diễn đàn Toán Casio sẽ đưa ra thêm một vài bài toán luyện tập

Phương trình bậc nhất đối với sin và cos là một dạng phương trình thường gặp trong chương trình Toán lớp 11. Do đó, tiếp nối Phần 1, trong bài viết này Diễn đàn Toán Casiosẽ đưa ra thêm một vài bài toán luyện tập

Bài toán. Giải các phương trình sau:

Câu a. $\sin \left( \dfrac{\pi }{2}+2x \right)+\sqrt{3}\sin \left( \pi -2x \right)=2$

Câu b. $\cos x+\sqrt{3}\sin x+2\cos \left( 2x+\dfrac{\pi }{3} \right)=0$

Hướng dẫn giải

Câu a. $\sin \left( \dfrac{\pi }{2}+2x \right)+\sqrt{3}\sin \left( \pi -2x \right)=2$

Ta có: $\sin \left( \dfrac{\pi }{2}+2x \right)+\sqrt{3}\sin \left( \pi -2x \right)=2$$\Leftrightarrow \cos 2x+\sqrt{3}\sin 2x=2\left( * \right)$

Sử dụng máy tính Casio để đưa phương trình $\left( * \right)$ về dạng phương trình lượng giác cơ bản

Bước 1. Chuyển máy tính về chế độ Radian: qw22

Bước 2. Tính $Pol\left( \sqrt{3},1 \right)$: q+s3$q)1=

image001 7

Kiểm tra giá trị của $Y$ Q)= image002 6

Như vậy ta có:

$\cos 2x+\sqrt{3}\sin 2x=2$$\Leftrightarrow \sin \left( 2x+\dfrac{\pi }{6} \right)=1$

$\Leftrightarrow \sin \left( 2x+\dfrac{\pi }{6} \right)=\sin \left( \dfrac{\pi }{2} \right)$

$\Leftrightarrow 2x+\dfrac{\pi }{6}=\dfrac{\pi }{2}+k2\pi $

$\Leftrightarrow x=\dfrac{\pi }{6}+k\pi ,k\in \mathbb{Z}$

Câu b. $\cos x+\sqrt{3}\sin x+2\cos \left( 2x+\dfrac{\pi }{3} \right)=0$

Ta có $\cos x+\sqrt{3}\sin x+2\cos \left( 2x+\dfrac{\pi }{3} \right)=0$

$\Leftrightarrow \dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x=-\cos \left( 2x+\dfrac{\pi }{3} \right)$

$\Leftrightarrow \dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x=\cos \left( \pi -2x-\dfrac{\pi }{3} \right)$

$\Leftrightarrow \dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x=\cos \left( \dfrac{2\pi }{3}-2x \right)$

Sử dụng máy tính Casio để đưa phương trình về dạng phương trình lượng giác cơ bản

Bước 1. Chuyển máy tính về chế độ Radian qw22

Bước 2. Chuyển đổi phương trình đã cho về dạng phương trình lượng giác cơ bản

Tính $Pol\left( \dfrac{\sqrt{3}}{2};\dfrac{1}{2} \right)$ : q+as3R2$q)a1R2=

image003 6

Kiểm tra giá trị $Y$: Q)= image002 6

Như vậy ta có:

$\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x=\cos \left( \dfrac{2\pi }{3}-2x \right)$

$\Leftrightarrow \sin \left( x+\dfrac{\pi }{6} \right)=\cos \left( \dfrac{\pi }{2}+\dfrac{\pi }{6}-2x \right)$

$\Leftrightarrow \sin \left( x+\dfrac{\pi }{6} \right)=\sin \left( 2x-\dfrac{\pi }{6} \right)$

$\Leftrightarrow \left[ \begin{align} & x+\dfrac{\pi }{6}=2x-\dfrac{\pi }{6}+k2\pi  \\ & x+\dfrac{\pi }{6}=\pi -\left( 2x-\dfrac{\pi }{6} \right)+k2\pi  \\\end{align} \right.,k\in \mathbb{Z}$

$\Leftrightarrow \left[ \begin{align}  & x=\dfrac{\pi }{3}-k2\pi  \\ & x=\dfrac{\pi }{3}+\dfrac{k2\pi }{3} \\\end{align} \right.,k\in \mathbb{Z}$

$\Leftrightarrow x=\dfrac{\pi }{3}+\dfrac{k2\pi }{3},k\in \mathbb{Z}$


Mọi ý kiến đóng góp và các câu hỏi thắc mắc về các bài viết hướng dẫn giải toán casio cũng như các vấn đề về máy tính Casio fx 580vnx , bạn đọc có thể gởi tin nhắn trực tiếp về fanpage DIỄN ĐÀN TOÁN CASIO

Chia sẻ

About Ngọc Hiền Bitex

Bitex Ngọc Hiền

Bài Viết Tương Tự

hkg

Dành cho các bạn yêu thích máy tính Casio 580 VNX

Sở dĩ chúng tôi đặt tiêu đề như vậy là vì có nhiều tính năng …

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết