GIẢI QUYẾT CÁC BÀI TOÁN VIETE VỚI CASIO fx- 580VN X

Trong bài viết dưới đây, Diễn đàn sẽ tổng hợp một số kiến thức cần nhớ về định lý Viete và một số bài toán minh họa nhằm giúp các bạn học sinh có thể ôn tập và rèn luyện thêm

I. KIẾN THỨC CHUNG

Phương trình bậc hai đối với ẩn $x\in R$ là phương trình có dạng: $\text{a}{{\text{x}}^{\text{2}}}+bx+c=0\left( 1 \right)\quad \left( a\ne 0 \right)$

Cách giải.

  • Tính $\Delta ={{b}^{2}}-4ac$

Nếu $\Delta <0$ thì phương trình (1) vô nghiệm.

Nếu $\Delta =0$ thì phương trình (1) có nghiệm kép ${{x}_{1}}={{x}_{2}}=-\frac{b}{2a}$.

Nếu $\Delta >0$ thì phương trình (1) có hai nghiệm phân biệt ${{x}_{1}}=\frac{-b-\sqrt{\Delta }}{2a},\ \ {{x}_{2}}=\frac{-b+\sqrt{\Delta }}{2a}$

Định lý Vi-et – Dấu các nghiệm.

    • Định lý: Nếu phương trình bậc hai ẩn $x\in R$: $\text{a}{{\text{x}}^{\text{2}}}+bx+c=0\left( 1 \right)\quad \left( a\ne 0 \right)$ có hai nghiệm ${{x}_{1}},\ \ {{x}_{2}}$ thì $S={{x}_{1}}+{{x}_{2}}=\frac{-b}{a},\ \ P={{x}_{1}}.{{x}_{2}}=\frac{c}{a}$.
    • Dấu các nghiệm:

+ Phương trình (1) có hai nghiệm trái dấu $\Leftrightarrow P<0$.

+ Phương trình (1) có hai nghiệm cùng dấu $\Leftrightarrow\left\{\begin{align}& \Delta \ge 0 \\ & P>0 \\ \end{align} \right.$.

+ Phương trình (1) có hai nghiệm cùng dương $\Leftrightarrow \left\{\begin{align}& \Delta \ge 0 \\ & P>0 \\ & S>0 \\ \end{align} \right.$.

+ Phương trình (1) có hai nghiệm cùng âm $\Leftrightarrow \left\{\begin{align}& \Delta \ge 0 \\ & P>0 \\ & S<0 \\ \end{align} \right.$.

II. MỘT SỐ BÀI TOÁN MINH HỌA

Bài 1. Cho phương trình ${{x}^{4}}-2\left( m-2 \right){{x}^{2}}+2m-6=0$. Tìm các giá trị của m sao cho phương trình có 4 nghiệm phân biệt.

Hướng dẫn giải

${{x}^{4}}-2\left( m-2 \right){{x}^{2}}+2m-6=0$ (1)

Đặt $t={{x}^{2}}\left( t\ge 0 \right)$

(1) $\Leftrightarrow $ ${{t}^{2}}-2\left( m-2 \right)t+2m-6$          (2)

${\Delta }’={{\left( m-2 \right)}^{2}}-\left( 2m-6 \right)={{m}^{2}}-6m+10={{\left( m-3 \right)}^{2}}+1>0$

Kiểm tra bằng máy tính Casio fx- 580VN X:

image001 image002 image003

Phương trình (2) luôn có 2 nghiệm phân biệt.

Ứng với mỗi nghiệm $t\text{ }>\text{ }0$thì phương trình (1) có 2 nghiệm phân biệt. Do đó, phương trình (1) có 4 nghiệm phân biệt khi chỉ khi phương trình (2) có hai nghiệm phân biệt dương.

$\Leftrightarrow $ $2m-6>0$ và $2\left( m-2 \right)>0$$\Leftrightarrow $  $m\text{ }>\text{ }3$.

Vậy $m\text{ }>\text{ }3$ thỏa mãn yêu cầu.

Bài 2. Cho phương trình ${{x}^{2}}-2\left( m-1 \right)x+{{m}^{2}}-6=0$   (1)  (với $m$ là tham số).

a) Giải phương trình với $m=3.$

b) Với giá trị nào của $m$ thì phương trình (1) có các nghiệm ${{x}_{1}},\,\,{{x}_{2}}$ thỏa mãn $x_{1}^{2}+x_{2}^{2}=16$

Hướng dẫn giải

a) Với $m=3$, ta có phương trình (1) trở thành  ${{x}^{2}}-4x+3=0$

Ta có $a+b+c=1-4+3=0$ nên phương trình có 2 nghiệm phân biệt ${{x}_{1}}=1;\,\,{{x}_{2}}=3$

Vậy với $m=3$, phương trình đã cho có 2 nghiệm phân biệt ${{x}_{1}}=1;\,\,{{x}_{2}}=3$

b) ${{x}^{2}}-2\left( m-1 \right)x+{{m}^{2}}-6=0$   (1)

Phương trình (1) là phương trình bậc 2 ẩn $x$ có $\Delta ‘={{\left( m-1 \right)}^{2}}-\left( {{m}^{2}}-6 \right)=7-2m$

Phương trình (1) có các  nghiệm ${{x}_{1}},\,\,{{x}_{2}}\,\,\Leftrightarrow \,\,\Delta ‘\ge 0\,\,\Leftrightarrow \,\,7-2m\ge 0\,\,\Leftrightarrow \,\,m\le \frac{7}{2}$   (*)

Khi đó theo định lý Viét ta có ${{x}_{1}}+{{x}_{2}}=2\left( m-1 \right);\,\,\,{{x}_{1}}.{{x}_{2}}={{m}^{2}}-6$

Do đó  $x_{1}^{2}+x_{2}^{2}={{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-2{{x}_{1}}{{x}_{2}}=4{{\left( m-1 \right)}^{2}}-2\left( {{m}^{2}}-6 \right)=2{{m}^{2}}-8m+16$

Vậy $x_{1}^{2}+x_{2}^{2}=16\Leftrightarrow 2{{m}^{2}}-8m+16=16\,\,\Leftrightarrow \,\,\left[ \begin{align}& m=0 \\  & m=4 \\ \end{align} \right.$

Kết hợp điều kiện (*)   ta có $m=0$ là giá trị thỏa mãn.

Sử dụng Casio fx- 580VN X để kiểm tra đáp án

image004 image005 image006

Bài 3.

a) Chứng minh phương trình ${x}^2-2x-2=0$ có hai nghiệm phân biệt${{x}_{1}},{{x}_{2}}$.

Tính $T=2{{x}_{1}}+{{x}_{2}}\left( 2-3{{x}_{1}} \right)$.

b) Chứng minh ${{x}^{2}}-3x+5>0$, với mọi số thực $x$.

Hướng dẫn giải

a. Chứng minh phương trình ${{x}^{2}}-x-2=0$ luôn có 2 nghiệm phân biệt:

$\Delta ‘=b{{‘}^{2}}-ac={{\left( -1 \right)}^{2}}-1\left( -2 \right)=3\Rightarrow \Delta ‘>0$ nên phương trình luôn có 2 nghiệm phân biệt.

${{x}_{1}}+{{x}_{2}}=2$, ${{x}_{1}}{{x}_{2}}=-2$

Tính

$T=2{{x}_{1}}+{{x}_{2}}\left( 2-3{{x}_{1}} \right)=2\left( {{x}_{1}}+{{x}_{2}} \right)-3{{x}_{1}}{{x}_{2}}=2\left( -2 \right)-3\left( -2 \right)=10$

b. Chứng minh ${{x}^{2}}-3x+5>0$ với mọi x

Ta có: ${{x}^{2}}-3x+5={{x}^{2}}-2x.\frac{3}{2}+{{\left( \frac{3}{2} \right)}^{2}}-{{\left( \frac{3}{2} \right)}^{2}}+5={{\left( x-\frac{3}{2} \right)}^{2}}+\frac{11}{4}>0$

Kiểm tra lại bằng Casio fx- 580VN X

image007 image008 image009

Chia sẻ

About Ngọc Hiền Bitex

Bitex Ngọc Hiền

Bài Viết Tương Tự

featured math exam tips

Dấu trừ và dấu âm

Trong Toán học có một vấn đề mang tính sư phạm đó là qui ước …

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết