Định lý Simson và ứng dụng
- 23/05/2022
- 8,909 lượt xem
Chứng minh.
- Tứ giáC $MIBK$ nội tiếp đường tròn đường kính $BM$ nên $\widehat{BIK}=\widehat{BMK} =90^\circ -\widehat{MBK}$
- Tứ giáC $MIJC$ nội tiếp đường tròn đường kính $CM$ nên $\widehat{CIJ}=\widehat{CMJ} =90^\circ -\widehat{MCJ}$
- Tứ giáC $ABMC$ nội tiếp đường tròn $(O)$ nên $\widehat{MBK}=\widehat{MCJ}$
Vậy $\widehat{BIK}=\widehat{CIJ}$, suy ra ba điểm $I, J, K$ thẳng hàng. (đpcm).
Áp dụng 1: Đề thi lớp 10 năm 2014 SGD và ĐT Hà Nam.
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
- a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
- b) Chứng minh $DA$ là tia phân giác của $\widehat{MDC}$
- c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
Giải
- a) Ta thấy $M$ và $H$ cùng nhìn $BD$ dưới một góc vuông nên tứ giác $BDHM$ nội tiếp đường tròn đường kính $BD$.
- b) $\widehat{ADC}=\widehat{ABC}$ (cùng chắn cung $AC$)$\widehat{ABC}=\widehat{ADM}$ (góc có các cạnh vuông góc)Suy ra $\widehat{ADC}=\widehat{ADM}$, nghĩa là $DA$ là tia phân giác của $\widehat{MDC}$.
- b) $D$ nằm trên đường tròn ngoại tiếp tam giác $ABC$ và $H, N, M$ lần lượt là hình chiếu vuông góc của $D$ trên các cạnh $BC, CA, AB$ nên ba điểm $H, N, M$ thẳng hàng trên đường thẳng Simson ứng với điểm $D$ của tam giác.
Lưu ý: Thay vì giải thích như trên, học sinh viết 4 dòng của chứng minh vào bài làm.
Áp dụng 2: Đề thi lớp 10 năm 2016 SGD và ĐT Daklak.
Cho điểm M nằm trên nửa đường tròn đường kính AB (M khác A và B), trên cung BM lấy điểm N (N khác B và M). Gọi C là giao điểm của đường thẳng AM và đường thẳng BN, H là giao điểm của đoạn thẳng BM và đoạn thẳng AN. Gọi D là điểm đối xứng của điểm H qua điểm M; P là hình chiếu vuông góc của điểm A lên đường thẳng DC.
- a) Chứng minh CH $\perp$ AB.
- b) Chứng minh tứ giác ABCD nội tiếp.
- c) Chứng minh ba điểm P, M, N thẳng hàng.
Giải
- a) Tam giác $ABC$ nhận $AN$ và $BM$ làm hai đường cao nên $H$ là trực tâm. Suy ra $CH \perp AB$.
- b) Do $AC$ là đường trung trực của $DH$ nên $\widehat{ADC}=\widehat{CHA}=90^\circ+\widehat{NCH}=90^\circ+90^\circ -\widehat{CBA}$.Suy ra $\widehat{ADC}+\widehat{CBA}=180^\circ$. Do đó tứ giác $ABCD$ nội tiếp.
- c) Điểm $A$ nằm trên đường tròn ngoại tiếp tam giác $BDC$ và $P, M, N$ lần lượt là hình chiếu vuông góc của $A$ trên các cạnh $CD, DB, BC$ nên theo định lý Simson, ba điểm $P, M, N$ thẳng hàng.
Lưu ý: Kết luận ở trên xem như định hướng nhanh cho lời giải, học sinh viết 4 dòng của chứng minh định lý vào bài làm.