Định lý thặng dư Trung Hoa và áp dụng - bài 2

Bài luyện tập – bài thi HSG MTCT THCS

Tìm số tự nhiên $x$ lớn nhất có 14 chữ số, biết $x$ chia cho $7741$ dư $2017$, chia cho $2017$ dư $2013$ và chia cho $2013$ dư $2011$.

 

Xét phương trình đồng dư

$$\left\lbrace\begin{array}{llll}
x & \equiv & 2017 & (\text{mod} \ 7741)& \\
x & \equiv & 2013 & (\text{mod} \ 2017)& \\
x & \equiv & 2011 & (\text{mod} \ 2013)
\end{array} \right.
$$

Áp dụng thuật toán “nghịch đảo mô-đu-lô” trong bài 1

thuattoan 1

 

ta tìm được $z_1, z_2$ và $z_3$ như sau:

  1. $\bullet\ $ ddm1a ddm1b
  2. $\bullet\ $ ddm1c ddm1d
  3. $\bullet\ $ ddm1 ddm1e

Ta có

$a_1y_1z_1=2017\times 2017\times 2013\times (-291)$
$a_2y_2z_2=2013\times 7741\times 2013\times 165$
$a_3y_3z_3=2011\times 7741\times 2017\times (-89)$
$$x \equiv a_1y_1z_1+a_2y_2z_2+a_3y_3z_3 + k n_1n_2n_3 \equiv 126598780950343+31430170761k, k \in \mathbb{Z}$$

Để $x$ lớn nhất có 14 chữ số, số nguyên $k$ lớn nhất thoả điều kiện $k \leqslant\ $ ddm1f. Vậy $k=-847$

Vậy số cần tìm là th$99.977.426.315.776$

Chia sẻ

About TS. Nguyễn Thái Sơn

BQT Toán Casio
nguyên trưởng Khoa Toán-Tin học ĐHSP TP HCM (1999-2009). nguyên Giám đốc- Tổng biên tập NXB ĐHSP TP HCM (2009-2011). nguyên Tổng thư ký Hội Toán học TP HCM (2008-2013). Giảng viên thỉnh giảng ĐHSP TP HCM.

Bài Viết Tương Tự

khi nhu cau cua nguoi tieu dung ve mat hang nao do tang cao thi nguoi san xuat se lam theo phuong an nao duoi day

CÁC BÀI TOÁN THỰC TẾ VỀ TIÊU DÙNG THCS

Toán thực tế là một chuyên đề đang được quý Thầy, cô và các bạn học sinh khá quan tâm hiện nay. Trong bài viết này, chúng tôi trình bày một vài ví dụ về tính toán tiêu dùng theo chương trình THCS.

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết