Luyện thi 10 Chuyên Toán

Showing 1–6 of 10 results

6
Placeholder

Luyện thi 10 Chuyên Toán

Đại số (câu 1) TS 10 PTNK 2024

  Bài 1 a).   Xét hệ phương trình $$\left\{\begin{array}{l}y^3+z^3=x\quad (1)\\ z^3+x^3=y\quad (2)\\ x^3+y^3=z \quad (3)\end{array}\right. $$ Ta giải hệ phương trình bằng phương pháp khử. Lấy (1) trừ (2) ta có: $\quad y^3-x^3+y-x=0 ⇔ (y-x)(y^2+yx+x^2+1)=0$ $⇔ (y-x)\underbrace{\left[\left(y+\dfrac{x}{2}\right)^2+\dfrac{3}{4}x^2+1\right]}_{>0}=0$ $⇔ y=x$. Tương tự lấy (2) trừ (3) ta có: $y=z$. Vậy hệ phương trình đã cho …
Placeholder

Luyện thi - THCS

Dựa vào BĐT cơ bản để CM 1 bất đẳng thức mới

  BĐT cơ bản 1. Cho $a, b,c $ tuỳ ý, ta có các bất đẳng thức cơ bản sau đây: $\left\lbrace\begin{array}{l}a^2+b^2\geqslant 2ab\\ b^2+c^2\geqslant 2bc\\ c^2+a^2\geqslant 2ca\end{array} \right.$ $⇒ a^2+b^2+c^2\geqslant ab+bc+ca$ BĐT cơ bản 2. Với $a, b, c$ tuỳ ý ta có:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca) \geqslant 3(ab+bc+ca)$.   Ngoài ra:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)\leqslant 3(a^2+b^2+c^2)$. Vậy: $$3(ab+bc+ca)\leqslant …
Placeholder

Luyện thi 10 Chuyên Toán

Bài toán Hình hoc TS 10 PTNK (câu 4)

    Gọi $N$ là giao điểm của $AE$ và $HT$. Tam giác $HKN$ vuông tại $K$, $T$ nằm trên cạnh huyền và $TH =TK$ nên $T$ là trung điểm $HN$.   Tứ giác $AHNC$ là hình thang, $O$ và $T$ lần lượt là trung điểm của hai đáy $AC; HK$, $I$ là giao điểm …
Placeholder

Luyện thi - THCS

Bài toán HH TS 10 PTNK (câu 2)

    Vì $\widehat{DAE}=\widehat{BAF}$ nên $DE=BF$, suy ra tứ giác $BDEF$ là hình thang cân với hai đáy $BD; FE$. Vậy $\widehat{DBF}=\widehat{BDE}\quad (3)$. Theo chứng minh ở câu a) $\widehat{BDE}=\widehat{DBK}\quad (4)$ (so le trong). Từ (3) và (4) ta suy ra $\widehat{DBF}=\widehat{DBK}$. Ta giác $BKF$ cân tại $B$ (vì $BK=BF=DE$) nên đường phân giác trong …
Placeholder

Luyện thi - THCS

Bài toán Hình học TS 10 PTNK

    Ta có nhận xét tứ giác $BHDC$ là hình bình hành nên hai đường chéo của nó cắt nhau tại trung điểm mỗi đường, Vì $I$ là trung điểm $BD$ nên $I$ cũng là trung điểm $HC$, nghĩa là $H, I, C$ thẳng hàng và $IH=IC$.   $HK/\!/ EC$ (1) vì cùng vuông …
Placeholder

Luyện thi 10 Chuyên Toán

Lại nói về tứ giác nội tiếp

Chúng ta dựa vào đề thi vào lớp 10 chuyên SGD Hà Nội năm 2021 a) Chứng minh 5 điểm $A, N, O, M, F$ cùng nằm trên một đường tròn.   Vì $F$ là điểm chính giữa của cung lớn $BC$ nên $FB=FC$, ngoài ra $\widehat{BFC}=\widehat{BAC}=60^\circ$ nên tam giác $FBC$ là tam giác đều. …
Placeholder

Luyện thi 10 Chuyên Toán

Đại số (câu 1) TS 10 PTNK 2024

  Bài 1 a).   Xét hệ phương trình $$\left\{\begin{array}{l}y^3+z^3=x\quad (1)\\ z^3+x^3=y\quad (2)\\ x^3+y^3=z \quad (3)\end{array}\right. $$ Ta giải hệ phương trình bằng phương pháp khử. Lấy (1) trừ (2) ta có: $\quad y^3-x^3+y-x=0 ⇔ (y-x)(y^2+yx+x^2+1)=0$ $⇔ (y-x)\underbrace{\left[\left(y+\dfrac{x}{2}\right)^2+\dfrac{3}{4}x^2+1\right]}_{>0}=0$ $⇔ y=x$. Tương tự lấy (2) trừ (3) ta có: $y=z$. Vậy hệ phương trình đã cho …
Placeholder

Luyện thi - THCS

Dựa vào BĐT cơ bản để CM 1 bất đẳng thức mới

  BĐT cơ bản 1. Cho $a, b,c $ tuỳ ý, ta có các bất đẳng thức cơ bản sau đây: $\left\lbrace\begin{array}{l}a^2+b^2\geqslant 2ab\\ b^2+c^2\geqslant 2bc\\ c^2+a^2\geqslant 2ca\end{array} \right.$ $⇒ a^2+b^2+c^2\geqslant ab+bc+ca$ BĐT cơ bản 2. Với $a, b, c$ tuỳ ý ta có:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca) \geqslant 3(ab+bc+ca)$.   Ngoài ra:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)\leqslant 3(a^2+b^2+c^2)$. Vậy: $$3(ab+bc+ca)\leqslant …
Placeholder

Luyện thi 10 Chuyên Toán

Bài toán Hình hoc TS 10 PTNK (câu 4)

    Gọi $N$ là giao điểm của $AE$ và $HT$. Tam giác $HKN$ vuông tại $K$, $T$ nằm trên cạnh huyền và $TH =TK$ nên $T$ là trung điểm $HN$.   Tứ giác $AHNC$ là hình thang, $O$ và $T$ lần lượt là trung điểm của hai đáy $AC; HK$, $I$ là giao điểm …
Placeholder

Luyện thi - THCS

Bài toán HH TS 10 PTNK (câu 2)

    Vì $\widehat{DAE}=\widehat{BAF}$ nên $DE=BF$, suy ra tứ giác $BDEF$ là hình thang cân với hai đáy $BD; FE$. Vậy $\widehat{DBF}=\widehat{BDE}\quad (3)$. Theo chứng minh ở câu a) $\widehat{BDE}=\widehat{DBK}\quad (4)$ (so le trong). Từ (3) và (4) ta suy ra $\widehat{DBF}=\widehat{DBK}$. Ta giác $BKF$ cân tại $B$ (vì $BK=BF=DE$) nên đường phân giác trong …
Placeholder

Luyện thi - THCS

Bài toán Hình học TS 10 PTNK

    Ta có nhận xét tứ giác $BHDC$ là hình bình hành nên hai đường chéo của nó cắt nhau tại trung điểm mỗi đường, Vì $I$ là trung điểm $BD$ nên $I$ cũng là trung điểm $HC$, nghĩa là $H, I, C$ thẳng hàng và $IH=IC$.   $HK/\!/ EC$ (1) vì cùng vuông …
Placeholder

Luyện thi 10 Chuyên Toán

Lại nói về tứ giác nội tiếp

Chúng ta dựa vào đề thi vào lớp 10 chuyên SGD Hà Nội năm 2021 a) Chứng minh 5 điểm $A, N, O, M, F$ cùng nằm trên một đường tròn.   Vì $F$ là điểm chính giữa của cung lớn $BC$ nên $FB=FC$, ngoài ra $\widehat{BFC}=\widehat{BAC}=60^\circ$ nên tam giác $FBC$ là tam giác đều. …