Phương trình vô tỉ với máy tính Casio fx880BTG

 

Hầu hết phương trình vô tỉ trong bài thi vào lớp 10 chuyên đều có thể giải được với sự hỗ trợ của máy tính cầm tay Casio fx-880BTG. Tuy nhiên chúng tôi đề nghỉ chỉ nên sử dụng với (đặc biệt là những phương trình không thuộc dạng quen thuộc. Bài viết này hướng dẫn các em học sinh cách trình bày lời giải phù hợp.
Ví dụ: Giải phương trình $\qquad 4x\sqrt{x+3}=x+4x^2+2\quad (1)$

 

 

Giải kết hợp máy tính

Ta có: $x+4x^2+2=4\left(x+\dfrac18\right)^2+\dfrac{31}{16}>0 \ \forall x$ nên điều kiện $x>0$.
ptvt1a

Khi đó $\quad (1)\Leftrightarrow 16x^2(x+3)=16x^4+x^2+4+8x^3+16x^2+4x\quad (2)$

(hằng đẳng thức $(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$).

$$(2)\Leftrightarrow 16x^4-8x^3-31x^2+4x+4=0$$

Bấm máy tính tìm 4 nghiệm lần lượt lưu vào A, B, C, D.
ptvt1b

Tính tổng và tích các cặp nghiệm:

ptvt1c

Do đó $\quad 16x^4-8x^3-31x^2+4x+4=0 \Leftrightarrow (4x^2-5x-2)(4x^2+3x-2)=0$

$\Leftrightarrow \left[\begin{array}{l}4x^2-5x-2=0 \Leftrightarrow x=\dfrac{5\pm \sqrt{57}}{8}\\ 4x^2+3x-2=0
\Leftrightarrow x=\dfrac{-3\pm \sqrt{41}}{8}\end{array}\right.$

Đối chiếu với điều kiện $x>0$ phương trình có hai nghiệm là:$$x=\dfrac{5+\sqrt{57}}{8}\ ;\ x=\dfrac{-3+\sqrt{41}}{8}$$

 

 

Bài làm

 

Ta có: $x+4x^2+2=4\left(x+\dfrac18\right)^2+\dfrac{31}{16}>0 \ \forall x$ nên điều kiện $x>0$.

Khi đó $\quad (1)\Leftrightarrow 16x^2(x+3)=16x^4+x^2+4+8x^3+16x^2+4x$

$\Leftrightarrow 16x^4-8x^3-31x^2+4x+4=0 \Leftrightarrow (4x^2-5x-2)(4x^2+3x-2)=0$

$\Leftrightarrow \left[\begin{array}{l}4x^2-5x-2=0 \Leftrightarrow x=\dfrac{5\pm \sqrt{57}}{8}\\ 4x^2+3x-2=0
\Leftrightarrow x=\dfrac{-3\pm \sqrt{41}}{8}\end{array}\right.$

Đối chiếu với điều kiện $x>0$ phương trình có hai nghiệm là:$$x=\dfrac{5+\sqrt{57}}{8}\ ;\ x=\dfrac{-3+\sqrt{41}}{8}$$

 

 

Lưu ý: Viết vào bài làm chỉ ghi những điều thiết yếu, các thao tác và kết quả trên MTCT là các công cụ hỗ trợ tìm lời giải. Theo cách thức này mọi phương trình vô tỉ dẫn đến phương trình bậc 4 đều có thể giải được không cần phải tuân theo dạng nào.

 

Chia sẻ

About TS. Nguyễn Thái Sơn

TS. Nguyễn Thái Sơn
Nguyên trưởng Khoa Toán-Tin học ĐHSP TP HCM (1999-2009). /n Nguyên Giám đốc- Tổng biên tập NXB ĐHSP TP HCM (2009-2011). /n Nguyên Tổng thư ký Hội Toán học TP HCM (2008-2013). /n Giảng viên thỉnh giảng ĐHSP TP HCM.

Bài Viết Tương Tự

Mục lục các bài học ôn thi vào lớp 10 chuyên Toán/Tin

1a. Phương trình vô tỉ 1b. Phương trình vô tỉ (tiếp theo và hết) 1c. …