fx-570VN PLUS Giải câu cực trị số phức trong ĐMH mà không cần vẽ hình

Sử dụng tính năng SOLVE nhằm phỏng đoán và giải bài toán cực trị của số phức mà không thông qua vẽ hình

Có một bạn học sinh đã gửi tới Diễn đàn bài toán sau (Trích trong đề thi minh họa của Bộ Giáo dục và đào tạo lần 3 năm học 2016-2017) kèm theo lời giải chi tiết, mong nhận được cách làm khác và khai thác được máy tính trong quá trình làm bài.

Bài toán: Xét số phức $z$ thỏa mãn $\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}$ . Gọi $m$ ,$M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của $\left| z-1+i \right|$ . Tính $P=m+M$.

A. $P=\sqrt{13}+\sqrt{73}$.

B. $P=\dfrac{5\sqrt{2}+2\sqrt{73}}{2}$.

C.$P=5\sqrt{2}+2\sqrt{73}$ .

D.$P=\dfrac{5\sqrt{2}+\sqrt{73}}{2}$ .

Phương pháp: Từ biểu thức số phức z ban đầu, phỏng đoán đường thẳng

Đáp án B.

Goi $M\left( x;y \right)$ là điểm biểu diễn của $z$.

Biến đổi :

[latex]\begin{align} & \left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2} \nonumber \\ & \Leftrightarrow \left| \left( x+2 \right)+\left( y-1 \right)i \right|+\left| \left( x-4 \right)+\left( y-7 \right)i \right|=6\sqrt{2} \nonumber \\ & \Leftrightarrow \sqrt{{{\left( x+2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}}+\sqrt{{{\left( x-4 \right)}^{2}}+{{\left( y-7 \right)}^{2}}}=6\sqrt{2} \nonumber \\ \nonumber \end{align}[/latex]

Thử nhập phương trình $\sqrt{{{\left( x+2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}}+\sqrt{{{\left( x-4 \right)}^{2}}+{{\left( y-7 \right)}^{2}}}=6\sqrt{2}$ vào máy, tìm nghiệm cho một vài giá trị nhỏ:

2018 04 06 085539

Phỏng đoán $M$ thuộc đoạn thẳng $AB$ với $A\left( -2;1 \right)$ , $B\left( 4,7 \right)$. Một đường thẳng có phương trình $y=x+3$  ,$x\in \left[ -2;4 \right]$ thỏa mãn. Đây là mấu chốt xử lí của bài toán, điều này không dễ để quan sát.

Từ đây ta có hai cách làm sau:

Cách 1:  Từ biểu thức $\left| z-1+i \right|$, đặt $C\left( 1;-1 \right)$.

Ta có $\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}$$\Leftrightarrow MA+MB=6\sqrt{2}$, mà $AB=6\sqrt{2}$ $\Rightarrow MA+MB=AB$.

Ta có

$\left| z-1+i \right|=MC\Rightarrow {{\left| z-1+i \right|}^{2}}=M{{C}^{2}}={{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}={{\left( x-1 \right)}^{2}}+{{\left( x+4 \right)}^{2}}=2{{x}^{2}}+6x+17$

Đặt $f\left( x \right)=2{{x}^{2}}+6x+17$ , $x\in \left[ -2;4 \right]$

${f}’\left( x \right)=4x+6$ ,${f}’\left( x \right)=0\Leftrightarrow x=-\dfrac{3}{2}$ ( nhận )

Ta có $f\left( -2 \right)=13$ ,$f\left( -\dfrac{3}{2} \right)=\dfrac{25}{2}$ ,$f\left( 4 \right)=73$ .

Vậy $f{{\left( x \right)}_{\max }}=f\left( 4 \right)=73$ , $f{{\left( x \right)}_{\min }}=f\left( -\dfrac{3}{2} \right)=\dfrac{25}{2}$ .

$\Rightarrow M=\sqrt{73}$ ,$m=\frac{5\sqrt{2}}{2}$ .$\Rightarrow P=\frac{5\sqrt{2}+2\sqrt{73}}{2}$ . Chọn B.

Cách 2: Biến đổi biểu thức thứ hai:

$\left| z-1+i \right|=\left| x+yi-1+i \right|=\left| \left( x-1 \right)+\left( y+1 \right)i \right|=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( y+1 \right)}^{2}}}\overset{y=x+3}{\mathop{=}}\,\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x+4 \right)}^{2}}}$

Nhập vào TABLE hàm số $f\left( x \right)=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x+4 \right)}^{2}}}\text{,                x}\in \left[ -2;4 \right]\text{ }$

Khảo sát hàm số này trên đoạn từ -2, tới 4 với bước nhảy $Step=\dfrac{6}{29}$.

2018 04 06 091314 

Chia sẻ

About TailieuCasio

TailieuCasio

Bài Viết Tương Tự

featured math exam tips

Ba cách tính khoảng cách giữa hai đường thẳng chéo nhau (1)

  Giả sử ycbt  là tính d(AB, CD) Cách 1: – Tìm một  mặt phẳng …

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết