Giải câu 39 đề thi minh hoạ 2021

Bài toán này thuộc dạng tìm GTLN, GTNN hoặc cực trị của hàm hợp $y=f(g(x))$ khi cho biết đồ thị hoặc bảng biến thiên của hàm số $y=f'(x)$. Đây cũng là bài toán hay gặp trong kỳ thi THPT của các năm qua.

 

cau39mh21

 

 

 

 

 

 

 

Giải:

Đặt $t=2x$, bài toán trở thành tìm GTLN của hàm số $g(t)=f(t)-2t$ trên đoạn $[-3;4]$.

Ta có $g'(t)=f'(t)-2$

$g'(t)=0 \Leftrightarrow f'(t)=2$. Quan sát đồ thị:

hcau39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ta có đồ thị của hàm số $y=f'(t)$ (trích lại đồ thị của hàm số đã cho đổi biến $t=2x$) và đường thẳng  $y=2$ cắt nhau tại hai điểm có hành độ $t=0$ và $t=2$. Ta lập BBT của hàm số $y=g(t)$

hcau39 2

 

 

 

 

 

 

Giải thích bảng biến thiên.

Ta có $g'(t)=f'(t)-2$.

Bên trái và bên phải tại lân cận của điểm $(0;2)$, đồ thị $f'(t)$ (đường cong màu xanh) nằm trên đường thẳng  $y=2$ nên tại hai phía giá trị $t=0$ đạo hàm đều dương.Bên trái tại lân cận của điểm $(2;2)$, đồ thị $f'(t)$ (đường cong màu xanh) nằm trên đường thẳng  $y=2$ nên tại bên trái  giá trị $t=2$ đạo hàm dương.

Bên phải tại lân cận của điểm có hoành độ $(2;2)$, đồ thị $f'(t)$ (đường cong màu xanh) nằm dưới đường thẳng  $y=2$ nên tại bên phải  giá trị $t=2$ đạo hàm âm.

 

Nhìn vào BBT của hàm số $g(t)$ trên đoạn $[-3;4]$ ta thấy GTLN của hàm $g(x)=f(2x)-4x=f(t)-2t$ là $g(2)=f(2)-4$, ta chọn C.

 

Chia sẻ

About TS. Nguyễn Thái Sơn

BQT Toán Casio
nguyên trưởng Khoa Toán-Tin học ĐHSP TP HCM (1999-2009). nguyên Giám đốc- Tổng biên tập NXB ĐHSP TP HCM (2009-2011). nguyên Tổng thư ký Hội Toán học TP HCM (2008-2013). Giảng viên thỉnh giảng ĐHSP TP HCM.

Bài Viết Tương Tự

article 14

Bài toán Tích phân VDC của Trường chuyên QH Huế

  Theo định nghĩa tích phân ta suy ra $$F(1)=F(0)+\int_0^1f(x)dx$$ Như vậy ở đây ta …

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết