TÌM NHANH TIỆM CẬN CỦA HÀM SỐ TRÊN MÁY TÍNH CASIO FX 580VNX

Bài toán tìm tiệm cận hàm số là một nội dung quan trọng trong chương I – Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, chương trình Giải tích lớp 12. Nội dung này thường xuyên có mặt trong các đề thi, kiểm tra. Nắm được phương pháp xác định tiệm cận hàm số trên máy tính cầm tay CASIO fx 580VNX là mục tiêu của bài viết này.

Bài toán tìm tiệm cận hàm số sau: Số tiệm cận đứng của đồ thị hàm số [latex]\frac{\sqrt{x+9}-3}{{{x}^{2}}+x}[/latex] là:

  1. 3
  2. 2
  3. 0
  4. 1

(Trích câu 18 – Mã đề 101 đề thi THPTQG 2018)

 Lời giải tự luận

Ta nhắc lại về định nghĩa tiệm cận đứng, đường thẳng $latex x={{x}_{0}}$ được gọi là đường tiệm cận đứng của đồ thị hàm số $latex y=f(x)$ nếu ít nhất một trong các điều kiện sau được thoả mãn:

$latex \underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=+\infty \\ \underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=-\infty \\ \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=+\infty \\ \underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=-\infty$

Quay trở lại bài toán trên, ta có tập xác định của $latex f(x)$ là: $latex D=[-9;+\infty )\backslash \{0;1\}$.

Ta có: $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}=+\infty$ nên $latex x=-1$ là tiệm cận đứng

Mặc khác:

$latex \begin{align}   & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x} \\  & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \sqrt{x+9}-3 \right)\left( \sqrt{x+9}+3 \right)}{\left( {{x}^{2}}+x \right)\left( \sqrt{x+9}+3 \right)} \\  & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+9-9}{\left( {{x}^{2}}+x \right)\left( \sqrt{x+9}+3 \right)} \\  & =\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{\left( x+1 \right)\left( \sqrt{x+9}+3 \right)} \\  & =\dfrac{1}{6} \\ \end{align}$

Nên $latex x=0$ không phải là tiệm cận đứng.

Vậy chỉ có 1 đường tiệm cận đứng do đó ta chọn đáp án D.

Chúng ta có thể xác định nhanh giới hạn của $latex f(x)$ bằng máy tính cầm tay CASIO fx 580VNX như sau:

Bước 1: Nhập biểu thức $latex f(x)$

  • Cách bấm: as[+9$p3R[d+[
  • Máy tính hiển thị:
tìm tiệm cận hàm số trên casio fx 580vnx
Nhập biểu thức như trên

Bước 2: Để tính $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\frac{\sqrt{x+9}-3}{{{x}^{2}}+x}$ ta có thể CALC tại giá trị $latex x=-1+{{10}^{-6}}\approx -1$

  • Cách bấm: as[+9$p3R[d+[==
  • Máy tính hiển thị:

tìm tiệm cận hàm số trên casio fx 580vnx

tìm tiệm cận hàm số trên casio fx 580vnx
Kết quả CALC

Từ kết quả ta dự đoán $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}=+\infty$ nên $latex x=-1$ là một tiệm cận đứng.

Bước 3: Để tính $latex \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}$ ta có thể CALC tại giá trị $latex x=0+{{10}^{-6}}\approx 0$

  • Cách bấm: !r0+10Kp6==
  • Máy tính hiển thị:

tìm tiệm cận hàm số trên casio fx 580vnx

tìm tiệm cận hàm số trên casio fx 580vnx
Kết quả CALC

Từ kết quả ta dự đoán $latex \underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt{x+9}-3}{{{x}^{2}}+x}=0,1666649544\approx \dfrac{1}{6}$ nên $latex x=0$ không là một tiệm cận đứng.

Các bạn tham khảo đồ thị của hàm số và đường tiệm cận đứng qua hình sau:

tìm tiệm cận hàm số trên casio fx 580vnx
Đồ thị hàm số và đường tiệm cận

Trên đây diendanmaytinhcamtay.vn đã giới thiệu cho các bạn cách tìm tiệm cận đứng để giải bài toán tìm tiệm cận hàm số trong đề thi THPTQG 2018. Truy cập diễn đàn mỗi ngày để xem thêm nhiều bài toán ứng dụng hay về cách sử dụng máy tính cầm tay CASIO fx 580VNX.

Chia sẻ

About Bitex Casio

Bitex Casio

Bài Viết Tương Tự

Capture

THỰC HIỆN MỘT SỐ BÀI TOÁN SỐ PHỨC BẰNG MÁY TÍNH CASIO FX-580VN X

Số phức là một nội dung khá mới mẻ, thời lượng không nhiều, học sinh chỉ mới biết được những kiến thức cơ bản của số phức, việc giải quyết những bài toán số phức còn gặp nhiều hạn chế. Năm bắt được vấn đề đó, Bitex EDU biên soạn tài liệu này nhằm hỗ trợ các em học sinh 12 một số hướng dẫn giải các bài toán số phức trên máy tính Casio fx-580VN X nhằm giúp các em có những sự chuẩn bị tốt nhất trong các kì thi sắp tới.

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết