Dùng Chức Năng Số Phức Để Viết Phương Trình Dao Động

Cơ sở lý thuyết :Phương trình dao động [latex]x = A\cos (\omega t + \varphi )[/latex] , tại thời điểm t = 0 được viết lại với dạng số phức như sau: [latex]\overline x = a + bi = A(cos\varphi + sin\varphi )[/latex] với [latex]a = A\cos \varphi ;b = A\sin \varphi ;A = \sqrt {{a^2} + {b^2}} ;\tan \varphi = \frac{b}{a}[/latex].

[latex]\left\{ \begin{gathered} x = A\cos (\omega t + \varphi ) \hfill \\ v = – \omega A\sin (\omega t + \varphi ) \hfill \\ \end{gathered} \right.\xrightarrow{{t = 0}}\left\{ \begin{gathered} {x_0} = A\cos \varphi \hfill \\ {v_0} = – \omega A\sin \varphi \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {x_0} = A\cos \varphi = a \hfill \\ – \frac{{{v_0}}}{\omega } = A\sin \varphi = b \hfill \\ \end{gathered} \right.[/latex]

Phương pháp giải: biết lúc t = 0 có [latex]\left\{ \begin{gathered} a = {x_0} \hfill \\ b = – \frac{{{v_{_0}}}}{\omega } \hfill \\ \end{gathered} \right. \to \overline x = {x_0} – \frac{{{v_0}}}{\omega }i \to A\angle \varphi \to x = A\cos (\omega t + \varphi )[/latex]

Ví dụ 1: Một vật dao động điều hòa với chu kỳ [latex]T = 2(s)[/latex] , tại thời điểm [latex]t = 2[/latex]  vật có ly độ [latex]x = 5\sqrt 3 ,v = 15,7cm/s[/latex] ,  với [latex]\pi = 3.14[/latex] . Viết phương trình giao động của vật.

Giải

[latex]\begin{gathered} \omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{2} = \pi; \hfill \ t = 0 \Rightarrow \left\{ \begin{gathered} a = {x_0} \hfill \\ b = – \frac{{{v_0}}}{\omega } \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} a = 5\sqrt 3 \hfill \\ b = – 5 \hfill \\ \end{gathered} \right. \Rightarrow \overline x = 5\sqrt 3 – 5i \hfill \\ \end{gathered}[/latex]

Để thực hiện được dạng toán số phức này ta cần điều chỉnh máy về chế độ số phức như sau : w2 Trên màn hình xuất hiện CMPLX  là ta đã cài được.

2

Ta tìm [latex]A,\varphi[/latex] bằng cách bấm máy tính 5s3$p5bq23=

Màn hình xuất hiện

3

Thì ta được [latex]A\angle \varphi[/latex] giá trị  tương ứng [latex]A = 10,\varphi = – {30^0} = – \frac{\pi }{6}[/latex]  ;

Vậy phương trình dao động của vật là:  [latex]x = A\cos (\omega t + \varphi ) = 10\cos (\pi t – \frac{\pi }{3})[/latex]

 

 

  

Chia sẻ

About toancasiobitex

Toancasiobitex

Bài Viết Tương Tự

anhdaidien

GIẢI QUYẾT MỘT SỐ BÀI TOÁN TÍNH THỂ TÍCH KHỐI LĂNG TRỤ TAM GIÁC

Bài viết này chia sẻ lại 1 tài liệu khá hay của thầy Trần Văn …

×

Sai số! tác hại to lớn của việc sử dụng máy tính Casio giả và cách phòng tránh Chi tiết